Math 210C Lecture 27 Notes

Daniel Raban

June 5, 2019

1 Character Table Calculations and Induced Representations

1.1 Calculating character tables using orthogonality relations

Last time, we proved orthogonality relations for irreducible characters.

Let G be a finite group of order n, let χ_1, \ldots, χ_r be the irreuducible characters (with corresponding representations V_i with dimension n_i), and let $g_1 \in C_1, \ldots, g_r \in C_r$ be representative of the conjugacy classes with orders c_i .

Example 1.1. Let's calculate the character table of D_4 . How many 1-dimensional representations does D_4 have? It should be the order of the abelianization of D_4 . So χ_1, \ldots, χ_4 should be 1-dmensional representations, i.e. homomorphisms to \mathbb{C} .

Since $|D_4| = 8$, we have $4 \cdot 1 + 2^2 = 6 = |D_4|$, so $n_5 = 2$. Using the orthogonality relations, we can find the missing irreducible representation.

D_4	e	s	r	rs	r^2
χ_1	1	1	1	1	1
χ_2	1	-1	1	-1	1
χ_3	1	1	-1	-1	1
χ_4	1	-1	-1	1	1
χ_5	2	0	0	0	-2

Example 1.2. Let G be a nonabelian group of order 8. Then $G \cong D_4$ or Q_8 . You can check that Q_8 has the same character table as D_4 . So the character table of a group does not uniquely determine the group.

Example 1.3. Let's figure out the character table of S_4 . S_4 has 5 conjugacy classes. We also know that $\sum_{i=1}^{5} n_i^2 = |S_4| = 24$. We know that χ_1 is trivial and χ_2 is the sign character. So we have $1 + 1 + x^2 + y^2 + z^2 = 24$. Then we must have x = 2 and y = z = 3 (without loss of generality).

There is a normal subgroup $N = \langle (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4) \rangle \leq S_4$, and $S_4/N \cong S_3$. So we get representations of S_4 by factoring through representations of S_3 . This gives χ_3 , which corresponds to the 2-dimensional irreducible representation of S_3 .

Using the orthogonality relations, we can solve for the last two rows of the character table.

S_4	e	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2)(3\ 4)$
χ_1	1	1	1	1	1
χ_2	1	-1	1	-1	1
χ_3	2	0	-1	0	2
χ_4	3	1	0	-1	-1
χ_5	3	-1	0	1	-1

Example 1.4. The character table for A_4 is similar, but $A_4^{ab} \cong \mathbb{Z}/3\mathbb{Z}$, so there should be 3 1-dimensional irreducible representations:

S_4	e	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2)(3\ 4)$
χ_1	1	1	1	1
χ_2	1	ω	ω^2	1
χ_3	1	ω^2	ω	0
χ_4	3	0	0	-1

Here $\omega = e^{2\pi i/3}$.

1.2 Induced representations and Frobenius reciprocity

Let R be a commutative ring, and let G be a group with $H \leq G$.

Definition 1.1. Let A be an R[G]-module. The **restriction** $\operatorname{Res}_{H}^{G}(A)$ fo A from G to H is A viewed as an R[H]-module.

This gives a functor $\operatorname{Res}_{H}^{G} : R[G] \operatorname{-Mod} \to R[H] \operatorname{-Mod}$. This is an exact functor. Does it have an adjoint?

Definition 1.2. The induced module of an R[H]-module B is the R[G]-module

$$\operatorname{Ind}_{H}^{G}(B) = \operatorname{Hom}_{R[H]}(R[G], B)$$

with action $g \circ \varphi(x) = \varphi(xg)$ for $x \in R[G]$.

This gives a functor $\operatorname{Ind}_{H}^{G} : R[H] \operatorname{-Mod} \to R[G] \operatorname{-Mod}$. This is an exact functor, as R[G] is R[H]-free (and hence projective).

We also have a functor $B \mapsto R[G] \otimes_{R[H]} B$, which is exact. The action is defined by $g \cdot (x \otimes b) = gx \otimes b$.

Proposition 1.1. If $H \leq G$ has finite index, then there exist natural isomorphisms k: $\operatorname{Ind}_{H}^{G}(B) \to R[G] \otimes_{R[H]} B$ sending $\varphi \mapsto \sum_{\overline{g} \in H \setminus G} g^{-1} \otimes \varphi(g)$.

Remark 1.1. In group cohomology, $H^1(H, B) \cong H^1(G, \operatorname{Ind}_H^G(B))$ for a $\mathbb{Z}[H]$ -module B.

Proposition 1.2. Let $H \leq G$ have finite index. Then $\operatorname{Ind}_{H}^{G}$ is left adjoint to $\operatorname{Res}_{H}^{G}$.

Proof. By the tensor-hom adjunction,

$$\operatorname{Hom}_{R[G]}(\operatorname{Ind}_{H}^{G}(A), B) \cong \operatorname{Hom}_{R[G]}(R[G] \otimes_{R[H]} A, B)$$
$$\cong \operatorname{Hom}_{R[G]}(A, \operatorname{Hom}_{R[G]}(R[G], B))$$

Evaluate at 1.

$$\cong \operatorname{Hom}_{R[H]}(A, B),$$

where in the last line B is viewed as $\operatorname{Res}_{H}^{G}(B)$.

Definition 1.3. Let W be a finite dimensional H presentation with character ψ . Then $\operatorname{Ind}_{H}^{G}(W)$ is an **induced representation** with dim = $[G : H] \dim(W)$, and $\operatorname{Ind}_{H}^{G}(\psi)$ is an **induced character**, the character of $\operatorname{Ind}_{H}^{G}(W)$.

Example 1.5. If G is finite, $\operatorname{Ind}_{H}^{G}(G) = F[G] \otimes_{F[H]} F \cong F[G/H]$. Here, g acts left on G/H by the permutation representation of G on G/H. If F has character ψ_1 , then $\operatorname{Ind}(H^{G}(\psi_1)(g))$ is the number of cosets g_iH fixed by G. Then $gg_iH = g_iH \iff g_i^{-1}gg_i \in H$.

Example 1.6. If $[G:H] < \infty$, then $\operatorname{Ind}_{H}^{G}(F[H]) \cong F[G]$. This is because $\operatorname{Ind}_{H}^{G}(F[H]) \cong \bigoplus_{j=1}^{s} \operatorname{Ind}_{H}^{G}(W_{i})^{m_{i}}$, where the W_{i} are the irreducible representations of H. On the other hand, $F[G] \cong \bigoplus_{i=1}^{r} V_{i}^{n_{i}}$. So every irreducible character of G appears in writing the irreducible characters of the induced characters of H as sums of irreducible characters of G.

Theorem 1.1 (Frobenius reciprocity). If ψ is a \mathbb{C} -character of H and χ is a \mathbb{C} -character of G, then

$$\left\langle \operatorname{Ind}_{H}^{G}(\psi), \chi \right\rangle_{G} = \left\langle \psi, \operatorname{Res}_{H}^{G}(\chi) \right\rangle_{H}.$$

Proof. The left hand side is

$$\dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[G]}(\operatorname{Ind}_{H}^{G}(U), V)) = \dim_{\mathbb{C}}(\operatorname{Hom}_{\mathbb{C}[H]}(U, \operatorname{Res}_{H}^{G}(V)),$$

which is the right hand side.